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A clarification is due about the paper by Hasegawa and Nemoto �Phys. Rev. E 75, 026105 �2007��, where
a clear distinction between the Zeta and Zipf power-law distributions offers an alternative interpretation of the
behavior of susceptibility of the model at hand. More precisely, their conclusion that susceptibility diverges for
this scale-free network model with power-law distribution P�k��k−� for the coordination number k for all
temperatures, for values of exponent ��4 �as observed in real networks�, stems from the �infinite domain�
Zeta distribution power-law assumption for the coordination number distribution. On the other hand, by
assuming the Zipf power-law distribution �with an arbitrary finite upper bound on the coordination number�,
the susceptibility is well behaved, diverges in the interval 0�T�TS, and is finite for T�TS, where TS depends
on P�k�.
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In a recent work Hasegawa and Nemoto �1� have derived
exact closed-form expressions for magnetization and zero-
field susceptibility of the Ising model on Cayley-tree-like
structures with arbitrary distribution of the tree coordination
number by generalizing the approach presented in �2� for
the regular Cayley tree. Their formulas are quite general,
expressed in terms of the first three moments of the coordi-
nation number k. They further apply these expressions
to analyze behavior of susceptibility on scale-free �SF�
networks with power-law distribution of the coordination
number P�k��k−�, and arrive at conclusion that, for ��4,
susceptibility diverges below temperature TS given by
tanh2�J /kBTS�= �k� / �k�k−1�� �where J is the nearest-
neighbor ferromagnetic interaction parameter, and kB is the
Boltzmann constant�, and remains finite above TS while for
��4 susceptibility diverges at all temperatures. In what fol-
lows we offer an alternative interpretation pertinent to scale-
free networks by assuming a finite domain of the power-law
distribution.

The general expression for zero-field susceptibility of a
Cayley-tree-like structure of radius n, derived by Hasegawa
and Nemoto �1�, is given by

�n =
c�1 − t2�

kBT
�	2t2 + �	 − 
�t2 − 1

�	t − 1�2�	t2 − 1�
	n − 1

	 − 1

+
2	n−1t�
t − 	2t − 	t + 	�

�	t − 1�2�	t2 − 1�
tn − 1

t − 1

+
�	2 − 
��t + 1�	n−1t2

�	 − 1��t − 1��	t2 − 1�
t2n − 1

t2 − 1

+
�
 − 	�	nt2

�	t − 1�2�	 − 1�
�	t2�n − 1

	t2 − 1
	
�1 + c

	n − 1

	 − 1
	 ,

�1�

where

c = �k�, 	 =
�k2�
�k�

− 1, 
 =
�k3� − �k2�

�k�
, �2�

and �k�, �k2�, and �k3� are the first three moments of the
coordination number, following �an arbitrary� distribution
P�k�. Setting P�k�=��k−3�, where � is the Kronecker delta
function, recovers results �2� for the regular Cayley tree with
�constant� coordination number k=3 while setting P�k�
�k−� corresponds to scale-free networks.

The crux of the matter in the SF network case is the
choice of the domain of the probability distribution. If one
opts for the infinite domain �as done in �1� for the analysis
of the zero-field susceptibility behavior�, the coordination
number is drawn from the Zeta distribution with the density
mass function f�k ;��=k−� /���� and infinite domain k
� �1,2 , . . . ,�, where ���� is the Riemann zeta function. In
this case however, the first moment is defined only for �
�2, the second moment for ��3, and the third moment for
��4, and the conclusion of Hasegawa and Nemoto �1�
about the zero-field susceptibility stems precisely from this
assumption.

On the other hand, for description of real networks it ap-
pears more reasonable to choose a finite domain by setting
an �arbitrary� upper bound K on the coordination number k,
corresponding to the choice of the Zipf distribution with the
probability mass function f�k ;� ,K�=k−� /HK,� and the finite
domain k� �1,2 , . . . ,K�, where HK,�=k=1

K k−� is the Kth
generalized harmonic number of order �. In this case all the
moments are finite, and Hasegawa and Nemoto �1� in fact
use this option to produce their Fig. 2 by setting maximum
degree to K=40.

Furthermore, by taking the limit n→, it is simple to
show that susceptibility diverges due to diverging radius only
�there are no intrinsic temperature induced critical points�,
and the limiting behavior is described by the formula

limn→

ln��n�
n

= �ln�	t2� , T � TS

0, T � TS
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where TS is determined by 	 tanh2�J /kBTS�=1. We demon-
strate this scaling behavior on Fig. 1, which should be com-*borko@ufpe.br
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pared with Fig. 2 of Hasegawa and Nemoto �1� �we use
linear temperature scale as opposed to logarithmic, and we
divide the logarithm of susceptibility by radius n�. It should
be noted that the observed maxima represent a finite-size
effect that fades away as the thermodynamic limit is ap-
proached but may be relevant for large finite-size networks.

In summary, this Comment is meant to clarify some con-
clusions drawn by Hasegawa and Nemoto �1� on the zero-
field susceptibility behavior of the Ising model on scale-free
networks. There is nothing special about ��4 for scale-free
networks except the fact that infinite domain power-law as-
sumption lacks the definition of the third moment. Assuming
a finite �arbitrarily large� domain removes this problem, and
the susceptibility is shown to be well behaved, with finite-
size scaling governed by the network radius.
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FIG. 1. Scaled zero-field susceptibility for �=2.7, calculated
using formula �1�, for several network sizes n=64,256,1024. The
full line represents the limiting curve ln�	t2�.
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